Mathematikum in Gießen

The Mathematikum in Giessen, which was opened in 2002, describes itself as “the world’s first mathematical science center.”

But all you loyal readers of my posts on the German city of Bonn might recall that the Arithmeum in that city is three years older, having been opened in 1999.

For us non-mathematicians, this might seem like a contradiction, since both of these are bright, modern, friendly, hands-on institutions that aim to make mathematics at least a bit comprehensible to the rest of us. Nonetheless, the Mathematikum in Gießen and the Arithmeum in Bonn are two very different places, dealing with two quite different (but overlapping) branches of mathematics.

The Arithmeum belongs to the Research Institute for Discrete Mathematics of the University of Bonn — discrete, not discreet. After visiting both the Arithmeum and the Mathematikum I found myself getting into quite a muddle trying to work out the difference between discrete mathematics and its opposite, which is not indiscreet but rather continuous. Discrete mathematics deals with things that are countable and have distinct, separate values, rather than values that vary continuously over a range.

As a result, the Arithmeum presents the history of calculating over the past six thousand years, up to and including the design of current-day microprocessors on chips.

The Mathematikum, on the other hand, deals with continuous phenomena like symmetry, geometry, topology and the mathematics of music — using hands-on exhibits and experiments that are meant to be accessible to visitors “of all ages and educational backgrounds”. Visitors are invited to “solve puzzles, build bridges, stand in a giant soap bubble, see themselves infinite times in a mirror and much more.”

In the Mathmatikum in Gießen

In principle, the exhibits are intended for people “of all ages”, but in 2009 an additional “Mini-Mathematikum” was inaugurated. This is “a separate area created especially for children from 4 to 8 years. The experiments in Mini-Mathematikum follow Mathematikum’s main idea and are adjusted to smaller children in content and size.”

More exhibits in the Mathematikum

More changes came about in 2020 as a result of the coronavirus pandemic. In some phases, the Mathematikum (like nearly everything else) was closed. As of July 2021 it is open again for a limited number of visitors, who are asked to book a time slot online in advance. Medical face masks are required for everyone aged six or over.

Their website also says: “We removed some experiments because it is hard to comply with the hygiene precautions while using them (e.g. exhibits that you need get very close to with your face). This unfortunately also concerns some favorite experiments. To compensate for that, we re-activated attractive experiments from our collection. You can still enjoy almost 200 exhibits and also look forward to rarely shown, exciting exhibits from past special exhibitions.”

Mirrors to create multiple (infinite?) images

The Mathematikum is big enough to be worth the price of admission (€ 9 for adults, € 6 for those who get a reduction and € 20 for a family, as of 2021), but not so big as to be totally intimidating. In fact there is nothing intimidating about it, because the whole place is open, airy and hands-on, and is run by a friendly, service-oriented young staff.

All the exhibits and activities are labeled in German and English, and they also have a free English-language folder called “hands-on mathematics” at the entrance.

The Mathematikum is located at Liebigstrasse 8 in Gießen,
one block from the main railway station.

My photos in this post are from 2004. I revised the text in 2021.

See more posts on Gießen, Germany.
See also: The Arithmeum in Bonn, Germany.

13 thoughts on “Mathematikum in Gießen”

  1. Fascinating. It seems there are more mathematics museums in Germany than there are anywhere else. I wonder why. Does it point merely to some indefinable national affection for maths, or to an imaginative awareness of the potential value of museums in fostering a solid education in all subjects?
    httpss://www.mathcom.wiki/museums/

  2. I am spectacularly bad with numbers, but I would make a comparison for discrete and continuous as like Analog (discrete) and digital (continuous). Or maybe it is the other way around.

    In any case both places sound like great places to take children (or anyone interested in learning)

    1. Yes, I would say the other way around, because the bits and bites (digital) can be counted, but in analog scales you can just move smoothly up and down the scale. But apparently there is no definition that is rigorous enough to satisfy mathematicians.

  3. I was looking at it from the perspective of the person asking “What time is it?” Before we had digital clocks, we never said – it is 10:42. We just said it is about quarter to 11. So digital makes it easier to be precise (and perhaps precision is not really required – do we really need to know that it is exactly 10:42 if we are not launching rockets or something). But you are right, analog moves up and down the scale. I think I am an analog person

    1. Precise times are often illusory, in any case. I can’t even get the oven to agree with the microwave, much less with my watch or computer.

  4. I think this type of continuous mathematics sounds more appealing than the discrete type (thanks for explaining the difference btw). Counting things is dull but concepts like symmetry and topology are much more creative and interesting to me 🙂

  5. ” … the mathematics of music …” – that alone sounds (did I make a pun?) worthy of a visit. Your excellent post makes the museum inviting and intriguing. Thank you for sharing.

Leave a Reply to rosalieann37 Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.